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For a certain collection of sets of formal power series, we show that a series belonging to any 

one set is related by a rational formula to some series in any other set. The collection includes 

the set of Poincart series of loop spaces on finite CW complexes; the subset obtained when we 

restrict to complexes of dimension four; the set of Hilbert series of finitely presented graded 

algebras; the set of Poincare series of Noetherian local rings; and the subset corresponding to 

those rings whose maximal ideal cubed vanishes. 

1. Introduction 

For a certain collection of sets of formal power series, this paper shows that a 

series belonging to any one set of the collection is related by a rational formula to 

some series in any other set. This introduction is dedicated to setting forth the rele- 

vant terminology; to explaining what we intend to prove in Sections 2 and 3; and 

to giving the appropriate mathematical context in which these results occur. In par- 

ticular, we will show how our results may be viewed as the establishment of six 

‘missing links’ in a certain diagram. 

Since the core in each of our results asserts that certain series are ‘rationally 

related’ to each other, we must define this concept first. 

Definition 1. Let A(z) = C,“=, a,&’ and B(z) = Cr=O b,z” be non-zero formal 

power series with (say) integral coefficients. We say that A is rationally related to 

B and write A -B if and only if there exist polynomails pi (z), 1 I is 4, such that 

PI (2)P4(2) +PzklP3(z) 
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and 

A set .d of formal power series is rationally dependent upon another set .d if and 
only if VA E .a/ FZB E 27 such that A -B. We write .o/ -+ .D when L-J is rationally depen- 
dent upon 8. 

LX(Z) when 

k = ‘Q, where 

~1 (X) = 0 and 

H*(X;Q) is - 

f.g. as a 

Q-algebra 

, _I (a) , 

[I21 Ul 

L,(z), - 
X a finite 

I I implicit in 

[21 or 1151 r 

H,(z), 
CC, 4 a 
finitely 

presented 

positive 

d.g.a. 

with C(z) 

rational 

CW complex, 

17,(X)=0 

I 

Lx(z), 
X a finite [I41 

2-cone, 
I---c 

n](X)=0 ----I Lx(z), X= r41uu 

:VS2)UdJe4) - 

V71 

- 

t 

G(z), 
G a f.p. 

connected 

graded 

Hopf 

algebra 

G(Z)> 
Gal-2 

Hopf alg. 

G(z), 
G a l-2 

Hopf alg. 

with gl. 

dim. (G)=3 

11311 
* L 

[I31 
l c 

G(z), 
G being a 

f.p. g.a. 

G(z), 
G a d.o.g. 

f.p. g.a. 

G(z), 
G having a 

contiguous 

presentation 

G(z)> 
G a one-two 

algebra 

(b) 
* 

II 151 

II 

Cc) 

Cd) 

-L (0 

PiI( 
(B, 4 a 
negative 

d.g.a. 

with 

dim(B) < 03 

Pdz), 
(B, 6) a 
negative 

c.d.g.a. 

with 

dim(B) < m 

Fig. 1. A diagram showing seventeen sets of formal power series and their rational interdependencies. 
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Clearly - is an equivalence relation. It is also clear that .s’ --f .a whenever .cYC .d 

and that .d+ .8 + %’ implies .d-+ V. 

The sets of formal power series which will interest us, together with their rational 

interconnections, are represented pictorially in Fig. 1. The best way to describe our 

results is to outline the meaning of each component in that picture. 

Fig. 1 shows various rectangles and subrectangles with arrows between them. The 

areas and subareas represent sets and subsets of formal power series, and a directed 

path from a set .d to a set .I signifies that .d+ .#. 

Divisions within the connected regions of Fig. 1 designate nested subsets, with the 

higher-placed labels describing more inclusive sets. For example, ‘finite CW com- 

plexes’ includes ‘finite 2-cones’, which in turn includes ‘spaces of the special form 

(vS2) U cue”): D’ erected paths representing the fact that d-r .a when .dC .+f are 

sometimes suppressed in the diagram, as is the path for .,/ n + %’ if s/+ .& and .ti -+ % 

are both drawn. 

When one includes allowance for passage from a subregion to an abutting higher 

subregion (representing passage from a set to a superset), one sees that one can flow 

from any rectangle of Fig. 1 to any other rectangle along the indicated paths. Com- 

binatorially the diagram is called a ‘strongly connected directed graph’. Paths 

labeled with bracketed references describe rational dependencies previously known 

and where the proofs can be found. Sections 2 and 3 of this paper will complete the 

six heretofore ‘missing links’ (a) through (f). 

Our main result can therefore be stated as 

Theorem 1. The seventeen sets of formal power series pictured in Fig. 1 are all ra- 
tionally dependent upon each other. 0 

The set descriptions in Fig. 1 should be mostly self-explanatory once a few ab- 

breviations are spelled out. Before proceeding we must fix a field k, preferably 

though not necessarily a prime field. The definitions of the seventeen sets will de- 

pend upon the chosen k, so there is actually a different version of Theorem 1 for 

Ich possible field k. 

‘i,‘e will begin at the bottom of Fig. 1 and work our way upwards. To begin with, 

1 pluase ‘the set of all’ is suppressed throughout for space considerations, e.g. the 

regtu:! !abelled ‘L,(z), X a finite CW complex, r,(X)=0 stands for 

{L,(z) )X is a simply connected finite CW complex}. 

When R is a local commutative Noetherian ring with residue field k, the PoincarP 
series of R is 

PR (z) = f dim,(Torf(k, k))z”. 
tZ=O 

In [ 161 G. Levin gave an important reduction theorem from which it follows that 

Poincare series of Noetherian local rings are rationally related to Poincare series of 

Artinian local rings. 
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Implicit in our Theorem 1 is the following strengthening of this result. 

Theorem 2. Given any commutative Noetherian local ring (S, n, k), there is a com- 
mutative Artinian local k-algebra (R, m, k) with m3 = 0 such that P,(z) -P&z). 0 

In other words, all the complexity of Poincare series of local rings is already pre- 
sent just among local k-algebras having m3 = 0. 

When X is a simply-connected locally finite CW complex, its loop series is the 
Poincare series of its loop space QX: 

L,(z) = P&z) = i dim~W,(QX;k))z”. 
II=0 

The space X is a finite 2-cone if it has the homotopy type of the cofiber of a map 
between two finite wedges of spheres: 

i/S& $SGX. 
j=l i=l 

A rather special class of spaces consists of those 2-cones for which each dj = 3 and 
each ci=2. These spaces always have a cell decomposition of the form 

(1) 

Implicit in Theorem 1 is 

Theorem 3. Given any finite simply-connected C W complex W (or, if char(k) = 0, 
any simply-connected W for which H*( W; k) is finitely generated as a k-algebra), 
there is a space X of the special form (1) such that L,(z) - Lx(z). 0 

As with local rings, we see that all the richness and diversity of (~5,) is already 
accounted for among the loop series of spaces described by (1). 

Terminology related to connected graded k-algebras is described in [3] and [5] and 
will not be repeated here. The abbreviation ‘f.p.’ stands for ‘finitely presented’; 
‘g.a.’ is ‘[connected] graded algebra’; and ‘gl.dim.’ means ‘global dimension’. A 
‘d.o.g.’ algebra is ‘degree-one-generated’; if in addition the minimal relations are 
quadratic we call it a ‘one-two algebra’. ‘Contiguous presentation’ is a technical 
condition which can wait until Section 3 to be defined. The Hilbert series of any 
locally finite graded vector space M= @,“=, M,, is 

M(z) = f dim(A4,)z”. 
II=0 

A Hilbert series is rational if and only if it equals the power series expansion around 
zero of a rational function. In particular, by [3, Lemma 1.21 the Hilbert series of 
a f.p. free algebra is always rational. 
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The abbreviation ‘d.g.a.’ stands for ‘[connected associative] differential graded 

k-algebra.’ A d.g.a. is a graded algebra A together with a k-linear map d: A -+A 
of degree f 1 such that d2 = 0 and d is a derivation, i.e., 

d(xy) = d(x)y + ( - l)IX’xd( y) (2) 

for all homogeneous x and y in A. We call (A, d) a positive d.g.a. if Idj = + 1 and 

(A,d) is a negative d.g.a. if IdI = - 1. 

(Note. This terminology, while reasonable, conflicts with another convention 

which assumes that Id 1 is always minus one. What we call a ‘positive d.g.a.’ becomes 

under that convention a d.g.a. which is ‘negative’ in the sense that its non-zero part 

is in negative degrees.) In either case, (A, d) is a commutative differential graded 
algebra (c.d.g.a.) if for all homogeneous x and y in A we have 

xy=(-1)l~li~~y*, 

and x2 = 0 whenever 1x1 is odd. The homology series of (A, d) is 

HA(z) = f dim,(H,(A, d))z”, 
II=0 

and when IdI = - 1 its Poincarkseries is the Hilbert series of its differential graded 

torsion, i.e., 

PA (z) = i dim, (TorkPTd)(k, k))z” 
n=O 

(For the definition of differential graded torsion see [8] or [9]; for advice on com- 

puting it in the commutative case, see, e.g., 111, Theorem l-6.21.) Thus a negative 

d.g.a. has three series associated with it: its Poincare series PA(z), its homology 

series HA(z), and the ordinary Hilbert series A(z) of the graded algebra A. 
This completes a brief overview of the classes of series we shall consider. 

One of the paths signifying rational dependence in Fig. 1 deserves further 

clarification. The link showing that any G(z) for a one-two Hopf algebra G is ra- 

tionally related to the loop series for a space of the form (Vs2) U (ue”) is proved 

in [ 181 only for k = Q, and it is proved implicitly in [ 141 or more explicitly in [4] only 

for prime fields k. Because the usual method for topologically realizing the Hilbert 

series of a one-two Hopf algebra involves recasting the coefficients in G’s presenta- 

tion as the coefficients in a sum of Whitehead products, it requires that this presen- 

tation utilize only the images in k of rational integers (cf. [2, Lemma 5.71). Only 

when k is a prime field can we count on an arbitrary G to have such a presentation. 

Thus for non-prime fields we cannot necessarily assert that all the other series are 

rationally related to loop series, even though the other rational interdependencies 

remain intact. 

2. The connection with differential graded algebras 

This section is devoted to proving links (a), (b), (e) and (f) of Fig. 1. We will do 
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this by describing four constructions, one from positive d.g.a.‘s to graded algebras; 
the next from negative to positive d.g.a.‘s; the third from Noetherian local rings 
(R, m, k) to negative commutative d.g.a.‘s of finite dimension over k; and finally 
the well-known bar-(cobar-)construction. 

Theorem 4. Let (C, d) be any positive d.g.a. over k. There is a graded algebra c 
such that 

(A) If C iff.p. as a graded algebra, so is c. 
(B) If C is a one-two algebra, so is c. 
(C) The construction is functorial. That is, whenever @: (C, d) + (Cl, d’) is a 

homomorphism of positive d.g.a. ‘s, there is an induced homomorphism $i : c + 2;‘. 

(D) The Hilbert series of c is related to the Hilbert series of the algebra C and 
to the homology series of (C, d) by the formula 

z(1 + z)C(# 
c(z)=(l+z)c(z)+ (1 +z)2-zC(z)-z~H&)’ (3) 

(E) In particular, if C(z) is rational, then c;(z) - H,(z). 

Corollary 1 (Link (b)). The set of homology series of finitely presented positive 
d.g.a. ‘s with rational Hilbert series is rationally dependent upon the set of Hilbert 
series of finitely presented graded algebras. 

Proof. Theorem 4(A) and 4(E). 0 

Corollary 2. The set of homology series of positive d.g.a. ‘s (C, d) for which C(z) 
is rational and C is a one-two algebra is rationally dependent upon the set of Hilbert 
series of one-two algebras. 

Proof. Theorem 4(B) and 4(E). 0 

Proof of Theorem 4. Given (C, d), define 6; by 

c=(Cnk(x,y))/J, 

where (XI= lyl = 1 and J is the two-sided ideal of Cn k(x, y) generated by 

(x2, xy, yx, y2} U (all [x, c] - d(c) 1 c is homogeneous, c E C} . 

Here [a, b] denotes ab - ( - l)l“l’iblba, so [x, c] = xc - (- l)lcicx. 
To prove parts (A) and (B), put D(c) = [x, c] - d(c) and note that D is a derivation, 

so the relations {[x, c] -d(c)} are all consequence of the relations {[x, Xi] - d(Xi)} 
as xi runs through a set of generators for C. If C=k(xl,...,xg)/(crl,...,a,) is a 
presentation for C, then a presentation for (? is 

c= k(x, , . . ..xg>/(ff., me.7 cr,; x2, XY, YX, y2; ix, xl1 - d(x, ), . . . , Ix, xgl - 0,)). 
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In particular, (A) and (B) follow. 

To prove part (C), any @:(C, d) + (C’, d’) induces a canonical map 4: 

Cnk(x,y) -+C’llk(x,y) satisfying @(x)=x, @(y)=y, and @(c)=@(c) for CEC. 

Because 

@(lx, cl -d(c)) = kw), 44c)l - @MC)) = [x3 @(c)l - d’(@(c)h 

c$ induces a homomorphism on the quotient algebras, $: C;- 6;‘. 

Part (E) of Theorem 4 is obviously an immediate consequence of part (D), so it 

remains only to compute C(z). To facilitate this, we need two additional notations. 

For a graded vector space N= @,“=, N,, let SN denote its suspension, i.e., 

sN= @,“=, (sN), where (sN), = 0 and (sN), = N,_ 1 for n >O. For a graded vector 

space N having N,=O, let TN denote the connected graded tensor algebra 

generated by N, i.e., TN= @E. (NO’). 

Put B = im(d) c C and let C be the quotient vector space 

C= C/(C,,@ B). 

Consider the graded vector space 

M=C@SC@(C@ T(sC)@sC), 

in which we write a typical element as a linear combination of elements having the 

special form 

u=a~sb@(c,@w&sc,). (4) 

Here a, 6, cl, c2 E C and w is a product 

w=(Sw,)(srV2)... (slVq), 

w; belonging to C and VQ~ denoting the image of w; in C. In order for (4) to be 

homogeneous of degree n in M, we require that n = Ial = lb I+ 1 = lc, / + lwl + /c21 + 
1, where IwI=Iwi]+... +lw,/+q. 

We can make M into a left (CII k(x,y))-module as follows. For CE C put 

C*(U)=ca@s(cb)@(cc,)@ w@sc,. 

when u is given by (4). Also put 

X*(U)=d(a)@s(d(b)+ (- l)‘“‘a)@d(c,)@ w@,sc2 

and 

v*(u) =O@O@ 1 @[l @.$a-( - l)lb’d(b))+((sC,)(w)Osc2)]. 

A straightforward calculation which we leave to the reader shows that M is an- 

nihilated by the ideal J. Hence A4 may be considered as a left module over the ring 

6;. 

In order to compute the Hilbert series C(s) we will define a surjective homomor- 

phism of graded vector spaces I,V: C -+ A4 which will turn out to be an isomorphism. 
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Let 1 continue to denote the unit element of the algebra C and let 
e= 10000 EM. It turns out that A4 is a cyclic (CII k(x,Y))-module. To see this 
let a, b, cl, wl, w2, . . . , wq, c2 E C satisfy 

(a(=lbl+l=lc,i+lw,I+... +Iw,j+Ic2i+q+l. 

Then 

(a+bx+crY~~Y... wQYc2)*(e)=aOsb@c,@(sw,)...(sw,)@(sc2). 

Hence we have a surjection of left C-modules I,V: C + M defined by y/(l) = e. In par- 

ticular, we have 

dim(C,,) 2 dim(M,J in every degree n. (5) 

We can obtain the reverse inequality by choosing a homogeneous basis s^ for 
B@ Co; extending to a basis S for C; defining s= S - s^, which surjects to a basis 
for c and considering the following subset of CII k(x, y) : 

~={a~aES}U{bx~bES} 

u {cl(Ywl)...(yw,)yc2 1420, WjES, Cl ES, QES}. 

We assert that the image of 9 in C= (Cn k(x, y))/J spans C. This is equivalent 
to asserting that Cn k(x,y) =J+ span(g). To see this, first consider elements of 
CII k(x, y) which do involve x. Because xc= + cx+ d(c) (mod J) and 
xcx= d(c)x + cx2 = d(c)x (mod J), and similar formulas hold for xcy or ycx, we can 
always reduce to the case where a word involving x non-trivially has the special form 
bx with b E C. Thus the two-sided ideal generated by x in Cn k(x, y) is contained 
in (J+ span(g)) + (Cn k(y)). 

It remains to show that Cu k(y))CJ+ span(s). A basis for Cn k(y) is certainly 

~a~a~S}U{c~(Yw~)~~~(Yw~)Yc2~c~~C2~Wj~S}~ 

But if any WjE s^, then wjEB@CO=im(d)@k, so either YwjY=Y2 or 
~W~Y=Y~(C)Y~YXCY~YCXY (mod J) for some C. In either case YWjYEJ, SO 

clywl...yw,yc2 EJ. The assertion that CU k(y) CJ+ span(s) follows. We have 
shown that 3, which can obviously serve as a basis for M, is a spanning set for C. 
Deduce that 

dim(M,)zdim(Cn) for every n. 

Combining inequalities (5) and (6) we obtain 

dim(M,) = dim(Cn) for all IZ, 

leading to 

C(z) =M(z). 

(6) 

But M(z) is easy to compute! It is 
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M(z) = C(z) + zC(z) + C(z)( 1 - zC(z)) - l zC(z). 

By formula (8) whose proof follows immediately, we have 

C(z) = C(z) -B(z) - 1 

143 

(7) 

ZCk) + zffck) 1 

=C(z)-l+z ~- 
1+z 

C(z)+zH,(z)-(1 +z) = 
l+z 

9 

from which (3) follows by substitution into (7). 0 

Lemma 1. Let (C, d) be a positive or negative d.g.a. and let B = im(d) be the graded 
submodule of boundaries. If jd j = + 1, then 

(8) 

and if IdI = - 1, then 

B(z) = (9) 

Proof. First suppose Id I= + 1. Write d, for d 1 c, and note that for each n we have 

a short exact sequence of graded k-modules 

O+Ker(d,)+C,,-+B,+,-+O. 

Putting K= Ker(d) we get 

K(z)=C(z)-z-‘&z). 

Because H,(z) = K(z) -B(z) we have 

Hc(z)=C(z)-z-lB(z)-B(z) 

=C(z)-z&(1 +z)B(z), 

from which we obtain formula (8). 

The proof when Id\ = - 1 is similar. q 

Our approach to negative d.g.a.‘s is to turn them into positive d.g.a.‘s by adjoin- 

ing a special element of degree two. 

Theorem 5. Let (A, 6) be a negative differential graded algebra. Then there is a 
positive differential graded algebra (C, d) such that 

(A) If A is finitely presented, so is C. 
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(B) The construction is functorial, i.e., any homomorphism @: (A, 6) + (A’, S’) 
induces a homomorphism 4: (C, d) --f (C’, d’). 

(C) The Hilbert series of C is C(z) = A (z)/( 1 - z2). In particular, C(z) is rational 
if A(z) is rational. 

(D) The homology series of C satisfies 

H,(z)=- ~ A(z) + zH/~k) 
l+z l-z2. 

(10) 

(E) Zf A(z) is rational, then HA(z) -H,(z). 

Corollary 3 (Link (a)). The set of homology series of finitefy presented negative 
d.g.a. ‘s having rational Hilbert series is rationally dependent upon the set of 
homology series of finitely presented positive d.g.a. ‘s with rational Hilbert series. 

Proof. Theorem 5(A) and 5(C) and 5(E). 0 

Proof of Theorem 5. Given (A, S), define C by C= A @ k[ y], where y is a new 

generator of degree two. Claims 5(A) and 5(C) and the implication 5(D) =) 5(E) 

should be clear. Define d by 

d(uy’) = G(u)y’+ ’ 

for u EA. The reader can check that d2=0 and that d is a derivation, so (C, d) is 

indeed a positive d.g.a. 

If 4: (A, 6) --f (A’, S’) is a homomorphism of negative d.g.a.‘s, i.e., if @ = S’@, 

then the algebra map 

$:WOkbl, d)+(A’Ok[A, d’) 

given by glA=@ and @J(y) = y satisfies 

@d&y’) = @(W)y’+‘) = @(6(u))y’+ ’ = 6’(@(~))y’+’ = d’(&uy”)), 

so 5(B) holds. 

It remains only to calculate H,(z). But it is obvious that the k-modules 

D = im(d) and B = im(6) are related via 

D={uya/u~B and arl}. 

Consequently 

z2B(z) 
D(z) = (1 _ z2) . 

By formula (9) we have 

B(z)=(l+z)-‘(A(z)-&(z)) 

and by (8) 



Rational dependence among Hilbert and Poincare’ series 145 

D(z)=z(l +z)_‘(C(z)-H,(z)), 

so (10) follows by solving for H&z). 0 

Let us turn now to the lower right portion of Fig. 1. In relating Poincare series 

of local rings to homology series of finitely presented positive d.g.a.‘s we originally 

worked in the equi-characteristic case. It was the idea of Clas Lofwall to use the next 

two results to get a reduction which is valid in any characteristic. Link (e) clearly 

follows from the following theorem. 

Theorem 6. Let (R, m, k) be any commutative Noetherian local ring, and let 
n = dim(m/m*) be its embedding dimension. Then there is a negative commutative 
differential graded algebra B which is finite-dimensional over k such that 

PR(z)=(l +zYPg(z). 

Proof. This result is essentially Corollary 4.6 in [lo]. We include a slightly different 

proof pointed out to us by Liifwall. 

Without loss of generality we can assume that R is complete in the m-adic 

topology. Hence R is a homomorphic image of a regular local ring R of the same 

embedding dimension. Let Z? be the Koszul complex of R and let K=Z?O ,-R. Since 

the acyclic closure of the augmented R-algebra R -+ k is obtained by first forming 

the Koszul complex K by adjoining variables of degree 1 and then forming the 

acyclic closure of K--t k, we obtain 

RR(Z) = (1 + z)nPK(Z). 

We refer to [l I] for details on acyclic closure. Let L be the acyclic closure of the 

augmented R-algebra R+ R. Then L is a commutative d.g. algebra which is free 

over 8. Put A = k @,- L. The canonical augmentation maps L 4 R and Z& k in- 

duce quasi-isomorphisms 

K=Z?@, R’lf@, Lqk@, L=A 

giving rise to an isomorphism 

Tor(K*dK)(k, k) G Tor (A,dA)(k, k). 

This yields PK(z) = PA (z). Since K is zero in degrees above n we have 

H;(A)zH;(K)=O for i>n. 

Thus we have an acyclic ideal I in A defined by Zi = Ai for i > n, Z, = im(d,) n A,, 
Zj= 0 for i<n. This yields another quasi-isomorphism A’A/Z. Setting B =A/Z we 
have Pa(z) = PA (z). The desired formula follows and the proof is complete since B 
is a negative commutative d.g.a. which is of finite dimension over k. 0 

Link (f) can be described quite simply as the dual of the bar construction. 

However, although the properties of this construction are well-known, the authors 
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were unable to find the result we need spelled out explicitly in any one reference. 

For this reason we supply a proof here. 

Proposition. For any finite-dimensional negative differential graded algebra (B, 6), 
there is a finitely generated free positive d.g.a. (C, d) such that P,(z) = H,(z). 

Corollary 4 (Link (f)). The set of PoincarP series of finite-dimensional negative 
d.g.a. ‘s is rationally dependent upon the set of homology series of finitely presented 
positive d.g.a.3 (C, d) having C(z) rational. 0 

Proof of Proposition. The bar construction [7, p. 731 on any associative augmented 

negative d.g.a. (B, dB) gives a differential graded coalgebra. To get it explicitly, 

one forms the tensor algebra TsB, SD denoting the suspension of the augmentation 

ideal B. One then defines a differential d having IdI = - 1 on B@ Tsi? by 

d= dl + d2, where d, and d2 are given by these formulas: 

d,(a@sbl@... @sb,)=d,(a)@sbl@... Osb, 

+ i A(i)a@sbl @ .** @SdB(bi)@... @sb,; 
,=I 

d2(a@sbl@... @sb,)=A(l)abl@... @sb, 

+ f: A(i)a@sbl 0 ... Os(bi_lbi)O... OSb,; 
i=2 

where ~(~)=(_~)i+~~l+lb~l+...+Ib,-~l~ 

It is straightforward to verify the following properties: 

(A) d;=d;=dld2+d2dl=0, so d2=0. 
(B) Viewing BzB@k as a submodule of B@TsB, d^I..,=d,. 
(C) (B@ TsB, d) is acyclic. If q: B -+ B is any left inverse to the inclusion B 6 B 

such that qds=dsq (which exists in our case because we assume any d.g.a. to be 

connected), then the map a@sbl O... @sbr- l@sq(a)@sbi@... @sb, is a chain 

contraction. 

(D) (B@ TsB, d) is a left (B, ds)-module. 

Properties (A)-(D) show that (B@ TsB, 6) is a (B, ds)-resolution of k. Therefore 

To&$ dB)(k, k) 3 H,((k, 0) 0, (B @ Tsi?, a)) = H,( TsB, d), 

where d= idk 0, d. 

The key property of d’is that it makes TsB into a differential graded coalgebra, 

i.e., the coassociative diagonal map 

A:TsB+TsB@TsB 

given by 

A(sb,@...@sb,)= 2 (sb,@...@sb,)@(sbj+l@... Osb,) 
i=o 



Rational dependence among Hilbert and PoincarP series 141 

becomes a chain map [6, pp. 21-221. It follows that the graded dual 

(C, dc) = ((TsB)*,(d)*) is a positive differential graded algebra. When B is finite- 

dimensional over k, C is a finitely generated free algebra (hence C(z) is rational). 

Because B is locally finite over a field, dualizing does not alter the size of the 

(co-)homology groups, i.e., 

H’(C, dc)=Hi(TsB, d)* 

Consequently P,(z) = H,(z), as promised. 0 

Remark. The problem of studying Poincare series of algebraic systems was initially 

raised in the 1957 paper of A.I. Kostrikin and I. Shafarevich (Dokl.Acad.Nauk 

S.S.S.R 1115, 1066-1069) where they looked at PkON(z) with N a finite- 

dimensional associative nilpotent algebra over k. They conjectured that such a Poin- 

care series would always be a rational function. In [17] C. Lofwall disproved that 

conjecture by establishing rational interdependence between the set of Poincare- 

series of finite-dimensional associative k-algebras k @ N with N3 = 0, and the set of 

Hilbert series of l-2 algebras G over k. The latter set was known to contain non- 

rational series by an example of J.B. Shearer [19]. 

The lower left connection in Fig. 1 follows from this interdependence since restric- 

ting G to the class of l-2 Hopf algebras corresponds to restricting N to being 

commutative. 

3. The reduction to one-two algebras 

In this section we will define a ‘contiguous presentation’ and prove links (c) and 

(d) of Fig. 1. This will complete the proof of Theorem 1. 

Before getting into the proofs themselves, a few remarks on the context of this 

question on reducing to one-two algebras may be helpful. In [.5, Theorem 6(a)] it 

is shown that the Hilbert series of any f.p. graded algebra G differs ‘very little’ from 

the Hilbert series of an associated degree-one-generated algebra N, the precise rela- 

tionship is that 

N(z) =p(z)G(z) + q(z) 

for a pair of polynomials p and q. Theorem 6(b) of [5] goes on to say that there 

is a one-two k-algebra B such that 

for certain polynomials r and s, where Q denotes coefficient-wise inequality. But 

there is no guarantee in [5] that B(z)-N(z), because there is no single formula 

which describes B(z) in terms of the series N(z) and invariants such as Tory(k, k) 

or TorF(k, k). Indeed, the precise series B(z) is sensitive to the specific presentation 

chosen for N. 
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The ideas developed here were suggested by this seeming intractability. We will 

present a variation on the construction in [5, 6(b)] and a class _‘1; of d.o.g. algebras 

such that, when NEJV, the resulting one-two algebra B has a Hilbert series which 

is rationally related to that of N. The condition defining JV’ is actually a constraint 

on N’s presentation, and when the condition is met we will call the presentation 

‘contiguous’. It then remains only to show that any finitely presented graded 

algebra’s Hilbert series is rationally related to the Hilbert series of an algebra in .A/, 

which we accomplish through a variation on the construction in [13]. 

Definition 2. Let G be a degree-one-generated finitely presented graded algebra over 

k and let 

G=k(x ,,..., x,>/(q ,..., a,> (11) 

be any minimal presentation for G. Let F= k(xl, . . ..x.> be the d.o.g. free algebra 

and for subsets D and Eof Flet DE=span{xyIxED,yEE}. Put R={ai,...,a,.} 

andlet Ri=(ajI lcrjl=‘}, soR=R2UR3U... UR,, whered=max{Iajl ]l~j<r}. 

Let I be the two-sided ideal (a,,...,a,)=FRF in F and let 

P= span(x,, . . . . XJ = Fl CF. Then the presentation (11) is called contiguous if and 

only if, for every integer m in the range 2 4 m I d- 1, we have the equality 

(12) 

Lemma 2. Any one-two algebra has a contiguous presentation. 

Proof. Condition (12) is vacuously satisfied since d= 2 and there are no integers in 

the range 2smsd- 1. 0 

Remark. Lemma 2 justifies the placement of the rectangle for ‘contiguous presenta- 

tion’ directly above the region for ‘one-two algebras’ in Fig. 1. 

Example 1. An example of a presentation which is not contiguous is 

G=k(u, u, w,x, y)/(ux-xw,xy, uox). 

To see that (12) is violated, try m=2: 

but Cf=, RjI= uuxl contains no non-zero elements in degree four. 

Example 2. An example of a presentation which is contiguous is 

G=k(u,o,w,x,y)/(ux-xw,xy,uxw). 
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To see that (12) is satisfied we have d= 3 so we need only check rn = 2: 

(. > ,~,RiF n P21=( UXWF) n P*Z= 24x(ten I) 

=uxwZ=R,Z= ; R;Z. 
i=3 

An algebra’s presentation being contiguous is not an invariant of the algebra. 

Clearly the algebras presented in Examples 1 and 2 are isomorphic! The fact that 

this condition is nevertheless useful is implicit in 

Theorem 7. Let G be a degree-one-generated k-algebra and suppose that G has a 
contiguous presentation with g generators. Let F, Rj, Z, P, and the number d be as 
in Definition 2. Then there is a one-two algebra B whose Hilbert series is given by 

B(r)=(&)C(i)[ 1+(g2+g3+... +gd-% 

-,c3 #(Rj)(z2+z3+... +Tj-‘)]- (13) 

Corollary 5 (Link (d)). The set of Hilbert series offinitelypresented graded algebras 
which have contiguous presentations is rationally dependent upon the set of Hilbert 
series of one-two algebras. 0 

Proof of Theorem 7. Let S = {x,, . . . , xg> be the set of generators for G. For m 2 0 

let Y, denote the collection of all integer m-tuples o = (a,, . . . ,o,) in which 

1 I a,(g. For IS E Y, let x0 be shorthand for x~,x,_. . . xc,,, E F. Put Y= UL:k Y, 

and for each o E Y let u, denote a new symbol of degree one. Define a graded k- 
algebra A by 

A =k(SU {u,},c yU {o})/J, 

where /uI = 1 and J is the two-sided ideal generated by 

{U0+,5EY}U{X;U,/X;ES,oEY} 

U~uxjIxjES~U~uU~~,,~~~~x~,X~~l~a~~(T2~EY2~ 

U{uu(, ,... ,,,)-z.+, ,... 0m ,j~Om((o.I ,..., o,,,)E Y, and 3sm<d). 

By using the relations in J, any element of A can be written uniquely as a linear 

combination of elements having the following ‘standard form’: 

w=x,vj or w = u,x,vJ’; (14) 
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so as graded vector spaces we have A = (k @ U) OF@ k[u], where 

U=span{u,IaE Y}. 

One key property of A is that it is a one-two algebra. The other is that F=k(S) 

embeds in A in such a way that the equation 

x,=u~-G.4, 

holds whenever o = (or, . . . , a,) with 2 I m <d. Consequently the elements of (F)k2 

all have a common left factor in A. Because of this we can take an arbitrary y E F, 

for msd, write it as y= C ,(i,=m c,x, where c, E k, and then define 

for t in the range 2~ t <m to get the relation that 

y=“‘-‘yPl (15) 

whenever 2 I t < 1 yI ICI’. Defining y[tl =y, note that when any yt’) is written in ‘stan- 

dard form’ (14), we have y[‘) E U[‘] @ F@ 1, where Uul is defined to be k and 

U[‘] = span{u, 1 (SE Yj} for t 12. Our plan is to take as B a quotient of A in which 

G instead of F embeds. 

For each of the defining relations ~j in the presentation (11) for G, let 

flj = aJl”~l- ‘I . Let K= (pj 1 Clj E R ) be the two-sided ideal they generate in A and put 

B=A/K. Note by (15) that j_~~“II=l~l-t+l, SO each I~jl=lOrjl-(l~j~-1)+1=2 

and B is therefore a one-two algebra. We assert that, in A, 

d-l 

K=(k@Z@k[o])@ @ (Urml@Z@k[u] 
m=2 

+span{a~“lF@k[u] 1 Iajl>m}). (16) 

To prove (16), the reader may check that the right-hand side is a two-sided ideal 

which contains each pj and that a spanning set for the right-hand side is obtained 

by multiplying the fij on the right and/or the left by sequences of generators of A. 

We are almost done. It remains only to compute B(z). Fortunately each vector 

space summand involved in (16) is homogeneous in A = @,“=, A,,, where we 

describe a k-submodule M of A as homogeneous if M= @,“=, (Mfl A,). Because 

of this we can write B(z) = A(z) -K(z), where 

(17) 

Here V[ml=U[m]~Z+span{Olj[mlFI lCXjl>m}CU’ml@Ffor mz2. 

To compute Vrml(z), let ,U m: UIml @F + F be the degree-(m - 1) homomorphism 

of right F-modules defined by pu,(u,,) =x0 for (T E Y, . Then each p, is one-to-one 

and 

p,(Vrml)= P”‘Z+ C ajF=P”‘Z+ i R;F. 
la,/>m t=m+l 
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Consequently 

I/[“l(z),z-m+’ pz+ i R;F>(z) 
l=,?ltl 

Because the presentation k(S)/(R) is a contiguous and a minimal presentation, 

and because F is free, we get 

y[ml(Z)=z-m+l .fzml(z)+ $ #(R;)z'F(z)- i #(Ri)ziZ(z) 
I=??!+1 ,-?7,+1 1 

=zg”z(z)+G(z)z-m+l J+, #(Rib’ * 

Combining this with formula (17) gives 

~(z)=A(z)-K(z)=(l + W))(F(z)) -K(z) 

d-l 

G(z) + U(zF(z) - c ~zg*V(z) 
m=2 

d-l d 

-G(z) c c #(Ri)~‘-~+l 
f?l-Z,=???+l 1 

which agrees with (13) after one reverses the order of summation. 0 

In the beginning of this section we stated that the class .A of algebras having con- 

tiguous presentations would provide a stepping-stone between general d.o.g. 

algebras and one-two algebras. Theorem 7 bridged the gap from ..t to one-two 

algebras, so we need only show how to concoct a contiguous from an arbitrary 

presentation. The inspiration for this construction came from [ 131, where Jacobsson 

devised a way to relate an arbitrary finitely presented graded algebra to a Hopf 

algebra. 

Theorem 8. Let G be any degree-one-generated finitely presented graded k-algebra. 
Then there is a graded k-algebra C having a contiguous presentation whose Hilbert 
series is given by 

C(z)=(l -g~)-~(2- G(z))-‘, where g= dim(Tory(k, k)). (18) 
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Corollary 6 (Link (c)). The set of Hilbert series of d.o.g. f.p. graded algebras is ra- 
tionally dependent upon the set of Hilbert series of algebras which have a con- 
tiguous presentation. El 

Proof of Theorem 8. Given G, let 

G=k(xl ,..., x,>/(q ,..., a,) 

be a minimal presentation for G, where each ix;1 = 1 and each lajl~2. Put 

S= {Xi, . ..) xg} and let S’ and S” be copies of S, i.e., they are disjoint from but 

isomorphic to S as graded sets. From them we may build k( S’) and k(S” ), which 

are copies of k(S), and we denote by b’ and b” respectively the elements in k(S’) 
and k( S”) corresponding to b E k(S). Let G, denote @y=, G, and retain from 

Section 2 the notation TG, for the graded tensor algebra on G, . 

Define the algebra C to be 

C=k(S’) @ TG, @k(Y) (19) 

as a graded vector space but define multiplication in C by the rule 

(a’O(uI)(ud... (U,)Ob”).(c’O(u1)(02)... (o,)Od”) 

=(a’@(u,)(u2)...(upc)(bu1)(uZ)...(uq)@d”). 

If p=O we intend this to be interpreted as 

(a’@ 1 @b”).(c’@(u,)...(uq)@d”)=a’c’@(bul)... (u,)@d”, 

and likewise if q = 0. The reader can check that this multiplication is associative. 

We claim that a presentation for C is 

C=k(SUS’US”)/(XiXj’-X~Xj, XiXy’-Xjk;, @(a,)1 l~i,j<g;l<t~r), 

(20) 

where @:k(S)+ -+k(SUS’US”) is defined by 

@Cxi,.*. x;,)=x;,x&..xi:,. 

To prove this claim, let D be the right-hand side of (20). For an element 

uEk’,R+, (u) denotes its image in TG, or T(k(S))+ . Consider the surjective 

algebra homomorphism 

k(SUS’US”)~C=k(S’)OTG+Ok(S”) 

given by s H 1 o(s) @ 1, s’ -s’ 0 10 1, s” ++ 10 10s”. This homomorphism 

vanishes on the relations defining D and therefore induces a surjective algebra 

homomorphism 

We will show that [ is injective (hence an isomorphism) by constructing a left inverse 

map r’. 
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Consider the k-linear map 7’(k(S)+) -+D defined by (u) ++ 4(u). This induces 

a well-defined map TG, --* D, since if u E ((x1, . . . , a,.) we may write u = 2 (UjOrjbj), 

so Q(U) = C ~(ajCrjbj) = C (aJo(oj) yielding G(U) =O. NOW we define the k- 

linear map 

<‘:k(S’)@TG, @k(S”)-C-*D 

by ~‘(a’@(~,)...(~~)@b”)=a’@(ur)...@(u,)b”, [‘(a’@l@b”)=a’b”. 

As the reader may easily check, <’ is an algebra homomorphism and <‘< is the 

identity on the generators from S U S’ U S”. Hence c’t = idD, which proves the 

claim (20). 

Thus Cis also a d.o.g. algebra and (18) follows from (19), so why is the presenta- 

tion (20) contiguous? Let F, P, Z, d, and Rj be as in Definition 2 applied to the 

presentation (20), so Rj = {G(q) 1 IQ, / = i} for iz 3. 

Let MU { 1) C k( S) be an order ideal of monomials such that the image of M in 

G forms a k-basis for G, (see, e.g., Lemma 1.1 of [3] for this). Having chosen M, 

let 

N’{x~~(wl)~(w,)...~(w,)x:lqrO, wje"}> 

which is a set of monomials in F whose images form a k-basis for C. Note in par- 

ticular that 

I+ span(N) = F while In span(N) = 0. 

Because of the form of the relations in R; we have for i?3 that 

R,c {#(Orj)} C span{all x,x;} and consequently that R,Nc PNC P”N for any m r2 

and for each ir 3, so 

(P”Z) fl (RiN) C (PmZ) f7 (PmN) = 0. 

Combining this with the fact that P’“Z> R;Z for i> m, we get 

= 6 (R,N@RjZ) n (P”Z) 
,=tn+ I > 

= ((l++,wJ) 0 (,++,RJ)) n(P”z) 

= & RiZ= f RiZ, 
i=m+1 ,=I?+ I 

which is precisely the desired condition (12). 0 
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4. Remarks, opinions, and open questions 

Having completed the technical part of the paper, we offer in this section some 

interpretations of its significance. We will comment on the methods used, on the 

formulas involved, and on the ‘classification problem’. We will also touch upon 

some possible generalizations of rational dependence and mention some open 

questions. 

One intriguing aspect of our work is the essential role played by general (i.e., non- 

Hopf) non-commutative graded algebras. Most of Sections 2 and 3 dealt in one way 

or another with these objects. This emphasis is not at all obviously implicit, say, in 

Theorem 2 or Theorem 3, which talk exclusively about local rings or about loop 

spaces. Although work on abstract graded algebras has been criticized as being un- 

duly specialized or irrelevant, it now appears that certain topological and/or ring 

theoretic constructions must be done (or can far more easily be done) in that 

category. 

Each of the links describing a rational dependence &‘+ g in Fig. 1 is given by an 

explicit formula, i.e., for each A(z) one has an explicit formula for B(z) which 

shows that B(z) -A(z). Although the formulas are sometimes complicated, they are 

constructive in the sense that an obvious finite procedure constructs B from A. 

Theorem 1, the title theorem asserting that many rational dependencies exist 

among classes of series, adds a great deal of importance to the ‘classification pro- 

blem’. This problem asks for a simple or concise description of those series which 

do occur as the loop series of some finite l-connected CW complex (resp., the Poin- 

car6 series of a local Noetherian ring, etc.). That is, given a series A(z), how can 

one tell whether A(z) equals some L,(z) (resp. equals some PR(z), etc.)? The most 

commonly occurring variation more modestly seeks a description of those series 

which are rationally related to a loop series (resp. PoincarC series, etc.). In view of 

Theorem 1 we now know that an answer to the classification problem for, say, loop 

series would also give an answer for PoincarC series of Noetherian local rings, for 

Hilbert series of Hopf algebras, and so on. Presumably the fact that one could settle 

seventeen classification problems at once affords a heightened incentive to work on 

this question. 

Definition 1 is not the only plausible definition for rational dependence, and some 

generalizations are possible. Starting with the fixed field k let k(z) denote the field 

of all rational functions over k in the indeterminate Z. Obviously k(z) is a subfield 

of k((z)), the field of all formal Laurent series with coefficients in k. Given any 

series A(z) E k((z)), let k(z, A(z)) denote the smallest subfield of k((z)) which con- 

tains both k(z) and A(z). Thus A(z) is rational if and only if k(z, A) = k(z). The for- 
mal Laurent series A(z) and B(z) with coefficients in k are weakly rationa& related 

if and only if k(z, A(z)) = k(z, B(z)). 
Obviously A(z) and B(z) are weakly rationally related if they are rationally 

related, and the converse holds if either A or B is transcendental over k(z). 
However, this converse fails when A and B are algebraic. For example, when k = Q, 
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the two series A(z) = (1 - 252)“’ and B(z) =A(z)2 are weakly rationally related but 
not rationally related. Because ,4(z) and B(z) have only integral coefficients, one 
can wonder whether loop series (resp. Poincare series, etc.) can be rationally related 
to them. This is but one unsettled instance of the classification problem. 

We restricted our attention in Theorem 1 to d.g.a.‘s (A, 6) in which A(z) is ra- 
tional. A more natural treatment of d.g.a.‘s permits A(z) to be irrational and con- 
siders the pair of series A(z) and E&,(z). We will say that the (pairs of) series for 
the d.g.a. ‘s (A, 6) and (C, d) are rationally related if and only if the field extensions 
k(z, A(z), HA(z)) and k(z, C(z), H,(z)) coincide. Since such a field extension can 
easily have transcendence degree two over k(z), we prefer not to compare it with 
k(z, G(z)) directly but rather to compare it with the extension k(z, G(z), N(z)), 
where G and N are two possibly unrelated graded k-algebras. If k(z,A(z), HA(z)) 
and k(z, G(z), N(z)) agree, we can say that the pair of series of the d.g.a. (A, 6) and 
the Hilbert series of the pair (G, N) are rationally related. Note by Theorem 4(D) 
that the series of a positive d.g.a. (C, d) is necessarily rationally related to the 
Hilbert series of the pair (c;, C). Likewise the [pair of] series of a negative d.g.a. 
(A, 6) is rationally related to the [pair of] series of a positive d.g.a. (C, d) through 
Theorem 5. 

Lemma 3. Given any pair (G, N) of finitely presented graded algebras, there is a 
finitely presented negative d.g.a. (A, 6) whose pair of series is rationally related to 

(G(z), N(z)). 

Proof. Let (B, d) be chosen (see [2] or [15]) such that B is a finitely presented free 
k-algebra and Hs(z) - G(z). Put 

(A, 6) = (B, d) II (N, 0) = (B II N, d II 0). 

The Hilbert and homology series of the coproduct A are related to the respective 
series of the factor d.g.a.‘s via (see [14]) 

A(z)-‘=B(z)-‘+N(z)-‘-l-N(z) 

and 

HA(~)-1=H~B,d~(~)-1+H~N,O~(~)-1-1=HB(~)-1+N(~)-1-1. 

One quickly sees that k(z, A(z), HA(z)) = k(z, N(z), G(z)). 0 

Theorem 9 is the pair-wise version of Theorem 1. To save space not all of the 
seventeen possible sets are listed. 

Theorem 9. The following sets of pairs of series are all rationally 
each other: 

(a) The set of pairs (A(z), HA(z)) for a negative d.g.a. (A, 4. 
(b) The set of pairs (C(z), H,(z)) for a positive d.g.a. (C, d). 

dependent upon 
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(c) The set of Hiibert series of pairs of finitely presented graded algebras. 
(d) The set of Hilbert series of pairs of one-two Hopf algebras with global dimen- 

sion three. 
(e) The set of pairs (PR(z), P,(z)) for local Noetherian rings R and S. 
(f) (When k is a prime field) The set of pairs (L,(z), Lx(z)) for simply-con- 

nected finite CW complexes W and X. 

Proof. That the first three sets are interdependent follows from Lemma 3 and the 

remarks immediately preceding it. The dependencies of (d), (e), and (f) on (c) and 

vice versa are obvious consequences of Theorem 1. q 

Rational dependence can also be generalized in the direction of series in more than 

one variable. The double Poincare’ series of a locally finite connected graded k- 

algebra G is 

%(Y, Z) = i f dim(Tor z ,(k, k))yPzq. 
p=o q=o 

If A(_Y, z) and B( y, Z) are formal Laurent series over k in two commuting indeter- 

minates, we are tempted to call A and B rationally related if 

k(y, z, A( y, z)) = k( y, z, B( y, z)). One could then ask whether double PoincarC series 

of general finitely presented graded algebras are rationally dependent upon double 

PoincarC series of, say, Hopf algebras. We have no results along these lines at this 

time. 

Interestingly, the only positive results about double series dependency which are 

currently available suggest that a broader notion of rational relationship may be 

desirable. According to [4], the loop series of a formal space (this is a concept from 

rational homotopy theory) can be viewed as a double series. When X is a 

l-connected formal space with finitely generated rational homology and R is its 

graded cohomology ring over Q we have the connection 

Li(YZ, z) =&(y, 2). 

Thus we can expect that k( y, z, Li) + k(y, z, PA) even though there is a tight rela- 

tionship between these two series. 
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